Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6563(374), p. 57-65, 2021

DOI: 10.1126/science.abj6856

Links

Tools

Export citation

Search in Google Scholar

The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Tracing the origin of CRISPR-Cas CRISPR-Cas systems have transformed genome editing and other biotechnologies; however, the broader origins and diversity of RNA-guided nucleases have largely remained unexplored. Altae-Tran et al . show that three distinct transposon-encoded proteins, IscB, IsrB, and TnpB, are naturally occurring, reprogrammable RNA-guided DNA nucleases (see the Perspective by Rousset and Sorek). In addition to identifying diverse guide-encoding mechanisms, the authors elucidate the evolutionary relationship between IsrB, IscB, and CRISPR-Cas9. Overall, these newly characterized systems, called OMEGA (for obligate mobile element–guided activity) systems, are found in all domains of life and may be harnessed for biotechnology development. —DJ