Published in

Cambridge University Press, Theory and Practice of Logic Programming, 5-6(17), p. 726-743

DOI: 10.1017/s1471068417000369

Links

Tools

Export citation

Search in Google Scholar

Finite model reasoning over existential rules

Journal article published in 2017 by Giovanni Amendola ORCID, Nicola Leone ORCID, Marco Manna
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractOntology-based query answering asks whether a Boolean conjunctive query is satisfied by all models of a logical theory consisting of a relational database paired with an ontology. The introduction of existential rules (i.e., Datalog rules extended with existential quantifiers in rule heads) as a means to specify the ontology gave birth to Datalog+/-, a framework that has received increasing attention in the last decade, with focus also on decidability and finite controllability to support effective reasoning. Five basic decidable fragments have been singled out: linear, weakly acyclic, guarded, sticky, and shy. Moreover, for all these fragments, except shy, the important property of finite controllability has been proved, ensuring that a query is satisfied by all models of the theory iff it is satisfied by all its finite models. In this paper, we complete the picture by demonstrating that finite controllability of ontology-based query answering holds also for shy ontologies, and it therefore applies to all basic decidable Datalog+/- classes. To make the demonstration, we devise a general technique to facilitate the process of (dis)proving finite controllability of an arbitrary ontological fragment.