Published in

Cambridge University Press, Journal of the Marine Biological Association of the UK, p. 1-8

DOI: 10.1017/s0025315417001357

Links

Tools

Export citation

Search in Google Scholar

Cytogenetic study on the invasive species Gmelinoides fasciatus in the ecosystem of the Gulf of Finland

Journal article published in 2017 by Larisa Barabanova, Svetlana Galkina ORCID, Elena Mikhailova
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The amphipod Gmelinoides fasciatus from Lake Baikal is an example of a species being introduced into a number of water bodies in Russia, including the water system of North-west Russia, to expand food reserves of commercial fish. The interest in this crustacean has been attributed to its successful adaptation and expanding habitat area in the region. In order to assess the role of genetic mechanisms in adaptation to new conditions the frequency of chromosomal aberrations (ChA) at anaphase and telophase stages of mitosis in G. fasciatus embryos from six local populations of Lake Baikal and two invasive populations of the Gulf of Finland, originating from natural habitats were studied in two sequential years. The average level of ChA varied slightly between 0.95% in the samples collected in Lake Baikal and 2.9% in those from the Gulf of Finland. A significant increase in the frequency of ChA was found at two sites in Lake Baikal in 2015 and at two locations in the Gulf of Finland in 2016. First information on G. fasciatus chromosome number and constitution acquired by means of molecular cytogenetic techniques is presented and discussed. The results enable us to suggest this amphipod as a sensitive model to study possible mechanisms of biological adaptation and at the same time as a natural bioindicator of the environmental state.