Published in

Cambridge University Press, Infection Control and Hospital Epidemiology, 08(38), p. 897-905

DOI: 10.1017/ice.2017.89

Links

Tools

Export citation

Search in Google Scholar

External Validation of Three Prediction Tools for Patients at Risk of a Complicated Course of Clostridium difficile Infection: Disappointing in an Outbreak Setting

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVEEstimating the risk of a complicated course of Clostridium difficile infection (CDI) might help doctors guide treatment. We aimed to validate 3 published prediction models: Hensgens (2014), Na (2015), and Welfare (2011).METHODSThe validation cohort comprised 148 patients diagnosed with CDI between May 2013 and March 2014. During this period, 70 endemic cases of CDI occurred as well as 78 cases of CDI related to an outbreak of C. difficile ribotype 027. Model calibration and discrimination were assessed for the 3 prediction rules.RESULTSA complicated course (ie, death, colectomy, or ICU admission due to CDI) was observed in 31 patients (21%), and 23 patients (16%) died within 30 days of CDI diagnosis. The performance of all 3 prediction models was poor when applied to the total validation cohort with an estimated area under the curve (AUC) of 0.68 for the Hensgens model, 0.54 for the Na model, and 0.61 for the Welfare model. For those patients diagnosed with CDI due to non-outbreak strains, the prediction model developed by Hensgens performed the best, with an AUC of 0.78.CONCLUSIONAll 3 prediction models performed poorly when using our total cohort, which included CDI cases from an outbreak as well as endemic cases. The prediction model of Hensgens performed relatively well for patients diagnosed with CDI due to non-outbreak strains, and this model may be useful in endemic settings.Infect Control Hosp Epidemiol 2017;38:897–905