Published in

Royal Society of Chemistry, Faraday Discussions, (198), p. 433-448

DOI: 10.1039/c6fd00216a

Links

Tools

Export citation

Search in Google Scholar

Stable hybrid organic/inorganic photocathodes for hydrogen evolution with amorphous WO3 hole selective contacts

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Photoelectrochemical H2 production through hybrid organic/inorganic interfaces exploits the capability of polymeric absorbers to drive photo-induced electron transfer to an electrocatalyst in a water environment. Photoelectrode architectures based on solution-processed organic semiconductors are now emerging as low-cost alternatives to crystalline inorganic semiconductors based on Si, oxides and III–V alloys. In this work, we demonstrate that the stability of a hybrid organic/inorganic photocathode, employing a P3HT:PCBM blend as photoactive material, can be considerably improved by introducing an electrochemically stable WO3 hole selective layer, paired with a TiO2 electron selective layer. This hybrid photoelectrode exhibits a photocurrent of 2.48 mA cm−2 at 0 VRHE, +0.56 VRHE onset potential and a state-of the art operational activity of more than 10 hours. This work gives the perspective that photoelectrodes based on organic semiconductors, coupled with proper inorganic selective contacts, represent a sound new option for the efficient and durable photoelectrochemical conversion of solar energy into fuels.