Published in

Royal Society of Chemistry, New Journal of Chemistry, 8(40), p. 6623-6635

DOI: 10.1039/c6nj00105j

Links

Tools

Export citation

Search in Google Scholar

Catecholase activity of Mannich-based dinuclear CuII complexes with theoretical modeling: New insight into the solvent role in the catalytic cycle

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Four new dinuclear CuII complexes were synthesised from two Mannich-base ligands namely 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-chlorophenol (HL1) and 2-[bis(2-methoxyethyl)aminomethyl]-4-chlorophenol (HL2): [Cu2(L1)(OH)](ClO4)2CH3OH (1), [Cu2(L2)2](ClO4)2H2O (2), [Cu2(L2)2(NO3)2] (3) and [Cu2(L2)2(OAc)2] H2O (4) and well characterised. X-ray diffraction analysis of the complexes reveals a Cu Cu distance of 2.9183(13), 2.9604(6), 3.0278(4) and 3.0569(11) Å, respectively. In 1 the metal coordination geometry is intermediate between trigonal bipyramidal (TBP) and square pyramidal (SP) (t = 0.488), in 2 the geometry is TBP (0.828 and 0.639) and in 3 and 4 is SP (t = 0.188 and 0.083, respectively). Spectrophotometric investigations to evaluate the catecholase activity of complexes against 3,5-di-tert-butylcatechol (3,5-DTBC) and tetrachlorocatechol (TCC) in three different solvents (acetonitrile, methanol and DMSO) under completely aerobic conditions reveal that complexes 1–4 are able to oxidise 3,5-DTBC in all the solvents, while TCC can be oxidised only in acetonitrile (kcat = 0.0002–0.02 s1). Intensive DFT calculations prove an ionic pathway for 1–3 while a unique neutral catalytic cycle for 4.