Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Nanoscale, 7(9), p. 2646-2651

DOI: 10.1039/c6nr08942a

Links

Tools

Export citation

Search in Google Scholar

Controlling the kinetics of the non-covalent functionalization of carbon nanotubes using sub-cmc dilutions in a co-surfactant environment †

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigate the origin of the slow kinetics of functionalization processes in micellar environments. We show that the ionic nature of the surfactants used to solubilize small molecules and nano-objects plays a central role in the slowness of the kinetics. In order to solve this issue, we have developed an innovative method that we apply to the hybrid compound porphyrin molecule/carbon nanotube. We use two ionic surfactants to solubilize the molecules and the nanotubes respectively. Passing the molecule suspension below the cmc allows circumventing the stability of the ionic surfactant while keeping the benefit of working with highly concentrated solutions. This method allows fine control of the functionalization reaction and tuning of the kinetics characteristic time over more than two orders of magnitude.