Published in

Royal Society of Chemistry, New Journal of Chemistry, 12(34), p. 2971

DOI: 10.1039/c0nj00493f

Links

Tools

Export citation

Search in Google Scholar

CrAPO-5 catalysts having a hierarchical pore structure for the selective oxidation of tetralin to 1-tetralone

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel CrAPO-5 material having a unique microporous?mesoporous hierarchical pore structure (CrAPO-5H) was synthesized using an organosilane surfactant to conventional CrAPO-5 reaction mixture by a one-step hydrothermal process. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2-adsorption isotherm and UV-visible diffuse reflectance spectroscopy, and employed as a catalyst for the liquid phase oxidation of tetralin. CrAPO-5H produced higher activity than conventional microporous CrAPO-5. Acylperoxy radicals, in situ generated from trimethylacetaldehyde and O2, were more effective as oxidant than tert-butyl hydroperoxide (t-BuOOH); 88% conversion of tetralin with 97% selectivity to 1-tetralone was obtained with the former, whereas 57% conversion with 86% selectivity was achieved using the latter at 80 1C after 8 h. The effect of reaction temperature, Cr content, solvent, and the type of aldehyde employed for the in situ generation of acylperoxy radicals on catalytic performance was investigated. Activities of CrAPO-5H remained constant after 1st catalyst recycle. A hot filtration experiment coupled with a blank test revealed that oxidation proceeded mostly on Cr sites in the CrAPO-5H, but a minor contribution from trace amount of leached Cr could not be ruled out.