Published in

American Physical Society, Physical review B, 17(86), 2012

DOI: 10.1103/physrevb.86.174101

Links

Tools

Export citation

Search in Google Scholar

Electronic and dynamical properties of the silicon trivacancy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The trivacancy (V3) in silicon has been recently shown to be a bistable center in the neutral charge state, with a fourfold-coordinated configuration, V3[FFC], lower in energy than the (110) planar one [ V. P. Markevich et al. Phys. Rev. B 80 235207 (2009)]. Transformations of the V3 defect between different configurations, its diffusion, and disappearance upon isochronal and isothermal annealing of electron-irradiated Si:O crystals are reported from joint deep level transient spectroscopy measurements and first-principles density-functional calculations. Activation energies and respective mechanisms for V3 transformation from the (110) planar configuration to the fourfold-coordinated structure have been determined. The annealing studies demonstrate that V3 is mobile in Si at T>200 ∘C and in oxygen-rich material can be trapped by interstitial oxygen atoms so resulting in the appearance of V3O complexes. The calculations suggest that V3 motion takes place via consecutive FFC/planar transformation steps. The activation energy for the long-range diffusion of the V3 center has been derived and agrees with atomic motion barrier from the calculations.