Published in

Lippincott, Williams & Wilkins, Medicine & Science in Sports & Exercise, 5(39), p. S82, 2007

DOI: 10.1249/01.mss.0000273230.02075.0c

Cambridge University Press, British Journal of Nutrition, 3(99), p. 571-580, 2008

DOI: 10.1017/s0007114507812013

Links

Tools

Export citation

Search in Google Scholar

Co-ingestion of leucine with protein does not further augment post-exercise muscle protein synthesis rates in elderly men

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Leucine has been suggested to have the potential to modulate muscle protein metabolism by increasing muscle protein synthesis. The objective of this study was to investigate the surplus value of the co-ingestion of free leucine with protein hydrolysate and carbohydrate following physical activity in elderly men. Eight elderly men (mean age 73 ± 1 years) were randomly assigned to two cross-over treatments consuming either carbohydrate and protein hydrolysate (CHO+PRO) or carbohydrate, protein hydrolysate with additional leucine (CHO+PRO+leu) after performing 30 min of standardized physical activity. Primed, continuous infusions withl-[ring-13C6]phenylalanine andl-[ring-2H2]tyrosine were applied, and blood and muscle samples were collected to assess whole-body protein turnover as well as protein fractional synthetic rate in thevastus lateralismuscle over a 6 h period. Whole-body protein breakdown and synthesis rates were not different between treatments. Phenylalanine oxidation rates were significantly lower in the CHO+PRO+leuv. CHO+PRO treatment. As a result, whole-body protein balance was significantly greater in the CHO+PRO+leu compared to the CHO+PRO treatment (23·8 (sem0·3)v. 23·2 (sem0·3) μmol/kg per h, respectively;P < 0·05). Mixed muscle fractional synthetic rate averaged 0·081 (sem0·003) and 0·082 (sem0·006) %/h in the CHO+PRO+leu and CHO+PRO treatment, respectively (NS). Co-ingestion of leucine with carbohydrate and protein following physical activity does not further elevate muscle protein fractional synthetic rate in elderly men when ample protein is ingested.