Published in

Royal Society of Chemistry, Polymer Chemistry, 43(7), p. 6575-6585

DOI: 10.1039/c6py01447j

Links

Tools

Export citation

Search in Google Scholar

Polymer-inorganic hybrid nanoparticles of various morphologies via polymerization-induced self assembly and sol-gel chemistry

Journal article published in 2016 by Gh Teo, Rp Kuchel, Pb Zetterlund, Sc Thickett ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The preparation of polymer-silica hybrid nanoparticles of various morphologies is reported. As a first step, polymer nanoparticles were synthesized using an alkoxysilane-functional methacrylic macroRAFT agent. Two different alkoxysilane-containing monomers, 3-(trimethoxysilyl)propyl methacrylate and 3-(triisopropoxysilyl)propyl methacrylate, were used to prepare the solvophilic block for the subsequent polymerization-induced self assembly (PISA) of benzyl methacrylate in ethanol. Various particle morphologies, such as vesicles, spheres and rods could be formed. The primary factor governing nanoparticle shape was the nature of the macroRAFT agent, with the bulkier triisopropoxysilyl group yielding spherical structures; the smaller trimethoxysilyl group allowed for morphological transitions to occur as the length of the solvophobic block was increased. In many cases, the resultant nanoparticle dispersion was highly monodisperse. The influence of RAFT agent type was also studied. The presence of reactive alkoxysilane groups at the particle surface enabled a silica shell to be grown from the surface via condensation of tetraethylorthosilicate (TEOS) in a controlled fashion, resulting in the simple preparation of hybrid nanoparticles.