Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 27(18), p. 17965-17972, 2016

DOI: 10.1039/c6cp03619h

Links

Tools

Export citation

Search in Google Scholar

Long-lived nuclear spin states in monodeuterated methyl groups

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It is possible to access long-lived nuclear singlet order in monodeuterated methyl groups, in the case that a significant chemical shift difference exists between the CH2D protons. This occurs when the local environment is chiral, and the CH2D rotamers have different populations. An experimental demonstration is presented for the case of N-CH2D-2-methylpiperidine. The ratio of the singlet relaxation time constant TS to the longitudinal relaxation time constant T1 is found to be equal to 3.1 ± 0.1 s, over a wide range of temperatures, solvents, and magnetic fields. The longest observed value of TS approaches 1 minute. The relaxation mechanisms of the long-lived state are discussed, and a modified model of the CH2D geometry is proposed to explain the observed ratio of TS to T1.