Published in

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems

DOI: 10.1109/iros.2013.6696708

Links

Tools

Export citation

Search in Google Scholar

Fast redundancy resolution for high-dimensional robots executing prioritized tasks under hard bounds in the joint space

Proceedings article published in 2013 by Fabrizio Fiacco, Fabrizio Flacco, Alessandro De Luca ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A kinematically redundant robot with limited motion capabilities, expressed by inequality constraints of the box type on joint variables and commands, needs to perform a set of tasks, expressed by linear equality constraints on robot commands, possibly organized with priorities. Robot motion capabilities cannot be exceeded at any time, and the resulting constraints are to be considered as hard bounds. Instead, robot tasks can be relaxed by velocity scaling if no feasible solution exists. To address this redundancy resolution problem, we developed a method in which joint space commands are successively saturated and their effect compensated in the null space of a suitable task Jacobian (SNS, Saturation in the Null Space). Computationally efficient versions of the basic and optimal SNS algorithms are proposed here, based on a task augmentation reformulation, a QR factorization of the main matrices involved, and a so-called warm start procedure. The obtained performance allows to control in real time robots with high-dimensional configuration spaces executing a large number of prioritized tasks, and with an associated high number of hard bounds that saturate during motion.