Published in

Royal Society of Chemistry, Soft Matter, 8(9), p. 2518

DOI: 10.1039/c2sm27210e

Links

Tools

Export citation

Search in Google Scholar

Two-dimensional colloidal networks induced by a uni-axial external field

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich. ; This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. ; Based on Monte Carlo and Molecular Dynamics computer simulations we investigate the aggregation patterns and dynamics of model colloidal mixtures consisting of particles with either one or two, oppositely oriented, induced dipole moments. The mixtures are confined to two spatial dimensions. Our model is inspired by recent optical-microscopy experiments involving polystyrene particles with (and without) gold patches. For a broad range of parameters, we find the model systems to self-assemble via a two-step scenario involving first percolation along the field, followed by a percolation transition in the transverse direction. The resulting two-dimensional networks are characterized by strongly hindered translational dynamics. ; DFG, GRK 1524, Self-Assembled Soft-Matter Nanostructures at Interfaces