Published in

Cambridge University Press, Journal of Fluid Mechanics, (732), p. 660-686

DOI: 10.1017/jfm.2013.425

Links

Tools

Export citation

Search in Google Scholar

Steady gravity waves due to a submerged source

Journal article published in 2013 by Christopher J. Lustri ORCID, S. Jonathan Chapman ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn the low-Froude-number limit, free-surface gravity waves caused by flow past a submerged obstacle have amplitude that is exponentially small. Consequently, these cannot be represented using an asymptotic series expansion. Steady linearized flow past a submerged source is considered, and exponential asymptotic methods are applied to determine the behaviour of the free-surface gravity waves. The free surface is found to contain longitudinal and transverse waves that switch on rapidly across curves known as Stokes lines on the free surface. The longitudinal waves are present everywhere downstream of the singularity, while the transverse waves are restricted to two downstream wedges. As the depth of the source approaches the surface, the familiar Kelvin-wedge wave behaviour is recovered.