Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Journal of Agricultural Science, 01(153), p. 68-77

DOI: 10.1017/s0021859613000877

Links

Tools

Export citation

Search in Google Scholar

Durum wheat in-field monitoring and early-yield prediction: assessment of potential use of high resolution satellite imagery in a hilly area of Tuscany, Central Italy

Journal article published in 2013 by A. Dalla Marta, D. Grifoni, M. Mancini, F. Orlando, F. Guasconi, S. Orlandini ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SUMMARYModern agriculture is based on the control of in-field variability, which is determined by the interactions of numerous factors such as soil, climate and crop. For this reason, the use of remote sensing is becoming increasingly important, thanks to the technological development of satellites able to supply information with high spatial resolution and revisit frequency. Despite the large number of studies on the use of remote sensing for crop monitoring, very few have addressed the problem of spatial variability at field scale or the early prediction of crop yield and grain quality. The aim of the current research was to assess the potential use of high resolution satellite imagery for monitoring durum wheat growth and development, addressing forecast grain yield and protein content, through vegetation indices at two stages of crop development. To best represent the natural variability of agricultural production, the study was conducted in wheat fields managed by local farmers. As regards dry weight, leaf area index and nitrogen (N) content, the possibility of describing the crop state is evident at stem elongation, while at anthesis this potential is completely lost. However, satellites seem to be unable to estimate the N concentration. Aboveground biomass accumulated from emergence to stem elongation is strictly related to the final yield, while it has been confirmed that the crop parameters observed at anthesis are less informative, despite approaching harvesting time.