Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Mineralogical Magazine, 5(79), p. 1073-1087

DOI: 10.1180/minmag.2015.079.5.04

Links

Tools

Export citation

Search in Google Scholar

New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa<sub>6</sub>[(SiO<sub>4</sub>)(PO<sub>4</sub>)](PO<sub>4</sub>)<sub>2</sub>F and aradite, BaCa<sub>6</sub>[(SiO<sub>4</sub>)(VO<sub>4</sub>)](VO<sub>4</sub>)<sub>2</sub>F, from paralavas of the Hatrurim Basin, Negev Desert, Israel

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractZadovite, BaCa6[(SiO4)(PO4)](PO4)2F (R3m, a = 7.0966(1) Å, c = 25.7284(3), V = 1122.13(3) Å3, Z = 3) and aradite, BaCa6[(SiO4)(VO4)] (VO4)2F (R3m, a = 7.1300(1), c = 26.2033(9) Å, V = 1153.63(6) Å3, Z = 3) are two new mineral species of a novel modular structure type related closely to the structure of nabimusaite, KCa12(SiO4)4(SO4)2O2F. Both minerals occur in paralavas enclosed in pyrometamorphic rocks of the Hatrurim Complex, Negev desert, Israel. Zadovite and aradite are colourless, transparent with a white streak, have a vitreous lustre and an uneven fracture. Both minerals are uniaxial (–) with refractive indices (589 nm) ω = 1.711(2), ε = 1.708(2) (zadovite) and ω = 1.784(3), ε = 1.780(3) (aradite). The zadovite structure type comprises two tetrahedral sites, which may host a broad compositional range of atoms such as Si, P, V and S. Results of electron microprobe analyses show a correlation between excess Si4+ and S6+ contents, suggesting the substitution scheme 2(P,V)5+ = Si4+ + S6+ at the tetrahedral sites. This points to the possibility of new minerals isostructural with zadovite with end-member formulae BaCa6(SiO4)2[(PO4)(SO4)]F, BaCa6(SiO4)2[(VO4)(SO4)]F, BaCa6[(SiO4)1.5(SO4)0.5](PO4)2F and BaCa6[(SiO4)1.5(SO4)0.5](VO4)2F. The Raman spectra of aradite and zadovite reflect the varying PO4 (e.g. change of band intensity at ∼1031 cm–1) and VO4 contents (e.g. change of band intensity at ∼835 cm–1). The presence of SO4 leads to an additional Raman band at ∼997 cm–1. The structure of zadovite-series minerals belonging to the nabimusaite group is characterized by a 1:1 alternation of antiperovskite-like {[FCa6](TO4)2}4+ modules and Ba(TO4)2–4 modules.