Published in

Royal Society of Chemistry, Journal of Materials Chemistry C Materials for optical and electronic devices, 39(1), p. 6335

DOI: 10.1039/c3tc31472c

Links

Tools

Export citation

Search in Google Scholar

TiO2-based transparent conducting oxides; the search for optimum electrical conductivity using a combinatorial approach

Journal article published in 2013 by Andreas Kafizas ORCID, Nuruzzaman Noor, Cj Carmalt ORCID, Ip Parkin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of Nb, W, N and F:TiO2 thin-film systems were grown by a combinatorial atmospheric pressure chemical vapour deposition (APCVD) process. Conditions were varied in each experiment to produce a series of films with compositional gradient. For each system, the electrical resistivity at a number of positions (up to 200 on each film) was screened using a high-throughput tool. This allowed easy identification of the material with the lowest electrical resistivity across a reservoir of combinatorially produced samples. The most conductive material within each system was analysed in depth by X-ray photoelectron spectroscopy, wavelength dispersive X-ray analysis, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV-visible-NIR spectroscopy and Hall effect measurements. The most electrically conductive materials are found in the F:TiO2 [Fs ≈ 4–5%, ρ = 0.21 Ω cm, μ = 3.6 cm2 V−1 s−1, n = 8.1 × 1018 cm−3] and Nb:TiO2 [Nb = 0.07 ± 0.03%, ρ = 0.22 Ω cm, μ = 3.4 cm2 V−1 s−1, n = 8.3 × 1018 cm−3] systems. The electrical resistivities reported for Nb:TiO2 and W:TiO2 are the best to date for materials grown by APCVD. Extensive comparisons with the literature are made and summarised in this report.