Published in

2013 IEEE International Conference on Robotics and Automation

DOI: 10.1109/icra.2013.6631141

Links

Tools

Export citation

Search in Google Scholar

Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture

Proceedings article published in 2013 by Milad Geravand, Fabrizio Flacco, Alessandro De Luca ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In physical Human-Robot Interaction, the basic problem of fast detection and safe robot reaction to unexpected collisions has been addressed successfully on advanced research robots that are torque controlled, possibly equipped with joint torque sensors, and for which an accurate dynamic model is available. In this paper, an end-user approach to collision detection and reaction is presented for an industrial manipulator having a closed control architecture and no additional sensors. The proposed detection and reaction schemes have minimal requirements: only the outer joint velocity reference to the robot manufacturer's controller is used, together with the available measurements of motor currents and joint positions. No a priori information on the robot dynamic model and existing low-level joint controllers is strictly needed. A suitable on-line processing of the motor currents allows to distinguish between accidental collisions and intended human-robot contacts, so as to switch the robot to a collaboration mode when needed. Two examples of reaction schemes for collaboration are presented, with the user pushing/pulling the robot at any point of its structure (e.g., for manual guidance) or with a compliant-like robot behavior in response to forces applied by the human. The actual performance of the methods is illustrated through experiments on a KUKA KR5 manipulator. © 2013 IEEE.