Published in

De Gruyter Open, International Agrophysics, 4(29), p. 423-432, 2015

DOI: 10.1515/intag-2015-0048

Links

Tools

Export citation

Search in Google Scholar

Effect of homogenization and ultrasonication on the physical properties of insoluble wheat bran fibres

Journal article published in 2015 by Ran Hu, Min Zhang ORCID, Benu Adhikari, Yaping Liu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWheat bran is rich in dietary fibre and its annual output is abundant, but underutilized. Insoluble dietary fibre often influences food quality negatively; therefore, how to improve the physical and chemical properties of insoluble dietary fibre of wheat bran for post processing is a challenge. Insoluble dietary fibre was obtained from wheat bran and micronized using high-pressure homogenization, high-intensity sonication, and a combination of these two methods. The high-pressure homogenization and high-pressure homogenization+high-intensity sonication treatments significantly (p<0.05) improved the solubility, swelling, water-holding, oil-holding, and cation exchange capacities. The improvement of the above properties by high-intensity sonication alone was marginal. In most cases, the high-pressure homogenization process was as good as the high-pressure homogenization+high-intensity sonication process in improving the above-mentioned properties; hence, the contribution of high-`intensity sonication in the high-pressure homogenization+high-intensity sonication process was minimal. The best results show that the minimum particle size of wheat bran can reach 9 μm, and the solubility, swelling, water-holding, oil-holding, cation exchange capacities change significantly.