Published in

Cambridge University Press, Psychological Medicine, p. 1-14

DOI: 10.1017/s0033291715002767

Links

Tools

Export citation

Search in Google Scholar

Different neural substrates for executive functions in youths with ADHD: a diffusion spectrum imaging tractography study

Journal article published in 2016 by H.-L. Chiang ORCID, Y.-J. Chen, C.-Y. Shang, W.-Y. I. Tseng ORCID, S. S.-F. Gau ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundThe relationship between white-matter tracts and executive functions (EF) in attention deficit hyperactivity disorder (ADHD) has not been well studied and previous studies mainly focused on frontostriatal (FS) tracts. The authors explored the microstructural property of several fibre tracts hypothesized to be involved in EF, to correlate their microstructural property with EF, and to explore whether such associations differ between ADHD and typically developing (TD) youths.MethodWe assessed 45 youths with ADHD and 45 individually matched TD youths with a computerized test battery for multiple dimensions of EF. From magnetic resonance imaging, FS tract, superior longitudinal fasciculus (SLF), arcuate fasciculus (AF) and cingulum bundle (CB) were reconstructed by diffusion spectrum imaging tractography. The generalized fractional anisotropy (GFA) values of white-matter tracts were computed to present microstructural property of each tract.ResultsWe found lower GFA in the left FS tract, left SLF, left AF and right CB, and poorer performance in set-shifting, sustained attention, cognitive inhibition and visuospatial planning in ADHD than TD. The ADHD and TD groups demonstrated different association patterns between EF and fibre tract microstructural property. Most of the EF were associated with microstructural integrity of the FS tract and CB in TD youths, while with that of the FS tract, SLF and AF in youths with ADHD.ConclusionsOur findings support that the SLF, AF and CB also involve in a wide range of EF and that the main fibre tracts involved in EF are different in youths with ADHD.