Published in

Royal Society of Chemistry, Soft Matter, 9(4), p. 1830

DOI: 10.1039/b802848f

Links

Tools

Export citation

Search in Google Scholar

Mechanically Tunable Dry Adhesive from Wrinkled Elastomers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report a new dry adhesive structure using a rippled poly(dimethylsiloxane) (PDMS) elastomer bilayer film, whose surface roughness and adhesion can be reversibly regulated by applying mechanical strain. It has a set of advantages not offered by other techniques for regulation of adhesion, including real-time tunability, no requirement of specific surface chemistry, operability under ambient conditions, and relative ease of control. To understand the mechanism for adhesion regulation quantitatively, we have modeled the mechanics of adhesion in the limits of small-and large-amplitude ripples, and show good agreement with indentation experiments. We demonstrate the real-time tunability of the new adhesive structure by repeatedly picking and releasing a glass ball simply by modulating the mechanical stretch of the rippled PDMS film.