Published in

Elsevier, Molecular and Cellular Proteomics, 5(10), p. M110.007377, 2011

DOI: 10.1074/mcp.m110.007377

Links

Tools

Export citation

Search in Google Scholar

Snapshots of Protein Dynamics and Post-translational Modifications In One Experiment—β-Catenin and Its Functions*

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

β-catenin plays multiple roles in the canonical Wnt signaling pathway and in cell-cell adhesion complexes. In addition, β-catenin is a proto-oncogene and activating β-catenin mutations are relevant in the genesis of colorectal, hepatocellular and other common cancers. Different functions of β-catenin as transcriptional co-activator or cell adhesion molecule are orchestrated by changes in concentration and phosphorylation as well as its ability to complex with proteins such as cadherins or transcription factors. Detailed quantitative and time-resolved analysis of β-catenin, based on the evaluation of the changes in the Wnt pathway, enable greater insights into health- and disease-related β-catenin function. The present paper describes a novel suspension bead array assay panel for β-catenin, which requires minimal amounts of sample and is able to relatively quantify total β-catenin, the extent of phosphorylation at multiple sites and the ratio of complexed and free β-catenin. This is the first study to combine three biochemical methods--sandwich immunoassay, co-immunoprecipitation, and protein-protein interaction assay--in one suspension bead assay panel. The assay was used to measure changes in the concentration of eight different β-catenin forms in HEK293 cells in a time-resolved manner. In contrast to the general consensus, our study demonstrates an increase in β-catenin phosphorylated at Ser-45 upon treatment of cells with rWnt3a or a GSK3 inhibition; we also link C-terminal phosphorylation of β-catenin on Ser-552 and Ser-675 with canonical Wnt signaling.