Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 36(105), p. 13486-13491, 2008

DOI: 10.1073/pnas.0803076105

Links

Tools

Export citation

Search in Google Scholar

Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified

Journal article published in 2008 by Hojun Song, Jennifer E. Buhay, Michael F. Whiting, Keith A. Crandall ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nuclear mitochondrial pseudogenes (numts) are nonfunctional copies of mtDNA in the nucleus that have been found in major clades of eukaryotic organisms. They can be easily coamplified with orthologous mtDNA by using conserved universal primers; however, this is especially problematic for DNA barcoding, which attempts to characterize all living organisms by using a short fragment of the mitochondrial cytochrome c oxidase I (COI) gene. Here, we study the effect of numts on DNA barcoding based on phylogenetic and barcoding analyses of numt and mtDNA sequences in two divergent lineages of arthropods: grasshoppers and crayfish. Single individuals from both organisms have numts of the COI gene, many of which are highly divergent from orthologous mtDNA sequences, and DNA barcoding analysis incorrectly overestimates the number of unique species based on the standard metric of 3% sequence divergence. Removal of numts based on a careful examination of sequence characteristics, including indels, in-frame stop codons, and nucleotide composition, drastically reduces the incorrect inferences of the number of unique species, but even such rigorous quality control measures fail to identify certain numts. We also show that the distribution of numts is lineage-specific and the presence of numts cannot be known a priori . Whereas DNA barcoding strives for rapid and inexpensive generation of molecular species tags, we demonstrate that the presence of COI numts makes this goal difficult to achieve when numts are prevalent and can introduce serious ambiguity into DNA barcoding.