Royal Society of Chemistry, Nanoscale, 16(5), p. 7410
DOI: 10.1039/c3nr01145c
Full text: Download
Mn-doped GaAs nanowires were grown in the self-catalytic growth mode on oxidized Si(100) surface by molecular beam epitaxy and characterized by scanning and transmission electron microscopy, Raman scattering, photoluminescence, cathodoluminescence, and electron transport measurements. The transmission electron microscopy studies evidenced the substantial accumulation of Mn inside the catalyzing Ga droplets at the top of the nanowires. Optical and transport measurements revealed that the limit of Mn content for self-catalysed growth of GaAs nanowires corresponds to the doping level, i.e., is much lower than the Mn/Ga flux ratio (about 3%) used during the MBE growth. The resistivity measurements of individual nanowires confirmed that they are conductive, in accordance with the photoluminescence measurements which showed the presence of Mn2+ acceptors located at Ga sites of the GaAs host lattice of the nanowires. An anomalous temperature dependence of the photoluminescence related to excitons was demonstrated for Mn-doped GaAs nanowires. ; Comment: 19 pages, 11 figures