Published in

Royal Society of Chemistry, Energy & Environmental Science, 2(5), p. 5592

DOI: 10.1039/c2ee02838g

Links

Tools

Export citation

Search in Google Scholar

Shaping the beating heart of artificial photosynthesis: oxygenic metal oxide nano-clusters

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Water oxidation is the crucial stage in the chemical and molecular sequence of photosynthesis, designed by Nature to convert solar light into chemical energy. The artificial “off-leaf” transposition is a major goal of energy research, aiming at the continuous production of hydrogen as a solar fuel, through the photo-catalytic splitting of water. Success in this task primarily depends on the interplay of light-activated multi-electron oxidation and reduction cycles and on the invention of stable and robust water oxidation catalysts, liberating oxygen with fast rates, high quantum yield, and long-term activity. A promising perspective is herein envisaged in the molecular design of functional metal-oxide cores and composite nano-materials.