Published in

Royal Society of Chemistry, Journal of Materials Chemistry, 34(21), p. 13074, 2011

DOI: 10.1039/c1jm12537k

Links

Tools

Export citation

Search in Google Scholar

Improved thermal stability of Au nanorods by use of photosensitive layered titanates for gas sensing applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Au nanorods have shown high potential applications due to strong and aspect ratio dependent surface plasmon resonances. A major limitation in the use of such nanostructures is related to their tendency to transform into the most thermodynamically stable spherical shape under heat or radiation exposure. In this work, we propose a method to delay the rod to sphere transformation, stabilizing the cylindrical shape up to 400 degrees C. This has been accomplished by using photosensitive-layered titanates, which can be densified and stiffened by UV irradiation. Au nanorods dispersed in titanate films were deposited by spin coating and treated by both UV irradiation and thermal annealing at different temperatures. By properly combining UV curing and thermal annealing, this method allows to obtain Au nanorods covered by crystalline TiO(2) rigid shells and to retain their shape and peculiar optical properties. Finally, the effect of interaction with specific gas analytes on the plasmon resonances of Au nanorods in TiO(2) anatase films has been exploited for optical gas sensing applications.