Published in

Cambridge University Press, Cardiology in the Young, 02(20), p. 133

DOI: 10.1017/s104795110999031x

Links

Tools

Export citation

Search in Google Scholar

The relationship between P-wave dispersion and diastolic functions in diabetic children

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractObjectiveThe aim of this study was to investigate the relations between the P-wave dispersion and diastolic functions in type 1 diabetic children.PatientsA total of 33 diabetic patients without any cardiovascular disease, with a mean age of 12.3 plus or minus 4.2 years, and 29 healthy controls, with a mean age of 10.4 plus or minus 3.9 years were enrolled for this study. Left and right ventricular functions were assessed by using standard pulsed-wave Doppler echocardiography. P-wave dispersion was calculated by measuring minimum and maximum P-wave duration values on the surface electrocardiogram.ResultsFor the diabetic patients, P-wave maximum duration and dispersion was found to be significantly increased compared with healthy controls. Likewise, mitral A velocity and A velocity time integral was significantly increased while the isovolumic contraction time was significantly higher in the diabetics. In tricuspid valve measurements, however, A velocity time integral was found to be significantly higher, whereas the deceleration time was significantly lower in the diabetics. No relation was found between the left ventricle diastolic functions and duration of diabetes, HbA1c levels and P-wave dispersion in the diabetic children. No correlation was found between the diastolic functions and P-wave minimum, maximum duration, and dispersion for all the participants.ConclusionIn type-1 diabetic children, the diastolic functions of both the ventricles were observed to be affected negatively together. Diabetes might be causing the prolongation of P-wave dispersion, but there was no relationship between the diastolic functions and P-wave dispersion in the diabetic children.