Published in

Cambridge University Press, Visual Neuroscience, 02(12), p. 359

DOI: 10.1017/s0952523800008038

Links

Tools

Export citation

Search in Google Scholar

The occurrence of dopaminergic interplexiform cells correlates with the presence of cones in the retinae of fish

Journal article published in 1995 by Eleonore Fröhlich ORCID, Koroku Negishi, Hans-Joachim Wagner
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractUsing light-microscopic immunocytochemistry against tyrosine hydroxylase, we have investigated the morphology of dopaminergic cells in 23 species of fishes representing various systematic classes and subclasses and which live in very different habitats. We have, for the first time, observed teleosts with dopaminergic amacrine cells. Thus, in both bony and cartilaginous fishes, dopaminergic cells are differentiated as interplexiform and amacrine cells. The differentiation of dopaminergic cells into amacrine or interplexiform cells in fishes correlates with the absence or presence of cones. In pure-rod retinae, they occur as amacrine cells, and in mixed rod/cone retinae, they occur as interplexiform cells. We conclude therefore that the differentiation of retinal dopaminergic cells in fish does not depend on the evolutionary or systematic classification of a given species. Rather, it is correlated with the occurrence of rods and/or cones, and thus linked more closely to the habitat. We argue that, in fish, the presence of cones and cone-specific horizontal cells may be responsible for inducing dopaminergic cells to differentiate as interplexiform cells. Possible functions of dopamine in all-rod retinae, which may not require adaptation, may include neuromodulation in the inner plexiform layer for the sensitization of the rod pathway, the shaping of biological rhythms, and the control of eye growth.