Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Parasitology, S1(128), p. S43

DOI: 10.1017/s0031182004006808

Links

Tools

Export citation

Search in Google Scholar

The application of mass spectrometry to identify immunogenic components of excretory/secretory products from adult Dictyocaulus viviparus

Journal article published in 2004 by J. B. Matthews, A. J. Davidson, R. J. Beynon ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Proteomics has come to the forefront in the post-genomic era. The ability to compare and identify proteins expressed in a particular cell type under specific physiological or pathological states requires a range of technologies, including separation of complex protein or peptide mixtures, densitometry-based or isotope-coded methods for comparison of multiple proteomes, and mass spectrometric methods for identification of individual low abundance proteins. Although an emergent technology, thus far, proteomics has provided new perspectives on many problems in biomedical science. In parasitology, proteomics has been used to answer specific biological questions relating to survival and development, and also to identify candidates for vaccines. Here, we describe an ongoing research programme in which proteomics is being used to identify potential vaccine candidates for the bovine lungworm, Dictyocaulus viviparus. This work is focusing on antibody responses to the adult parasite excretory/secretory (ES) products, with selection of candidate antigens based on differential screening with serum from immune versus non-immune animals to simplify the proteome and the ensuing analytical challenges. Thus far, we have identified seven candidate proteins using this strategy. Of these, one protein showed significant identity to a previously cloned gene from D. viviparus, whilst the other six proteins have shown no significant identities. Isolation of further peptide sequences is now warranted to facilitate cloning of the genes encoding these antigens.