Cambridge University Press, British Journal of Nutrition, 4(88), p. 379-387, 2002
DOI: 10.1079/bjn2002664
Full text: Unavailable
During pregnancy, the accumulation of long-chain polyunsaturated fatty acids (LCPUFA) in fetal tissues places a substantial demand upon maternal lipid metabolism. As lipid metabolism is intimately linked to aspects of protein metabolism, a reduced protein intake in pregnancy may impair activities of enzymes and transport proteins responsible for supplying LCPUFA to the fetus, thereby compromising fetal development. We have investigated the effect of reduced protein intake on LCPUFA status in the non-pregnant rat and in the pregnant rat, and in fetus at day 20 of gestation. Female rats (n 5 per group) were either mated and fed the control diet (180 g protein/kg) or low-protein diet (90 g protein/kg, LPD) diet throughout pregnancy, or fed the control diet or LPD for 20 d (non-pregnant animals). The fatty acid compositions of maternal liver and plasma, and fetal liver and brain were determined by GC. Feeding the LPD did not lead to any gross changes either in adult or fetal growth, or in total lipid concentrations in adult rat liver. However, the LPD was associated specifically with lower liver (42·6 %) and plasma (19·4 %) phosphatidylcholine (PC), and plasma triacylglycerol (28·6 %) docosahexaenoic acid (DHA) concentrations in pregnant rats and reduced fetal brain PC- (26·1 %) and phosphatidylethanolamine- (25·6 %) DHA concentrations. Together, these results show that variations in maternal dietary protein consumption alter DHA status in pregnancy and modify DHA accumulation into the fetal brain. The present results suggest that lower maternal protein intakes reduce delivery of DHA from the mother to the fetus, which may impair development and function of the fetal brain.