Published in

Elsevier, Microelectronics Reliability, 8(52), p. 1575-1580

DOI: 10.1016/j.microrel.2011.11.010

Links

Tools

Export citation

Search in Google Scholar

Effect of IC layout on the reliability of CMOS amplifiers

Journal article published in 2011 by Feifei He, Cher Ming Tan ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

With shrinking device size and increasing circuit complexity, interconnect reliability has become the main factor that affects the integrated circuit (IC) reliability. Electromigration (EM) is the major failure mechanism for interconnect reliability. However, little research had been done on the effect of IC layout on the void nucleation time (i.e. the time where the vacancies in the metal gather and nucleate into a tiny void) in the interconnections of the circuits due to electromigration using 3D modeling. In this paper, we construct the 3D models for a CMOS class-AB amplifier and a RF low noise amplifier (LNA), and investigate the impact of layout design on the void nucleation time through the computation of the atomic flux divergence (AFD) of the 3D circuit models. From the simulation results we find that, there is a change in the value of the maximum total AFD with the change in the number of contacts or the inter-transistor distance. A change in the location of the maximum total AFD is observed in the LNA circuit with different finger number as a result of the change in the line width and the transistor rotation. This indicates a different reliability lifetime and void formation location with different layout designs.