Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 34(14), p. 11904

DOI: 10.1039/c2cp41624g

Links

Tools

Export citation

Search in Google Scholar

Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lithium cobalt fluorophosphate, Li(2)CoPO(4)F, is successfully synthesized by a solid state reaction under Ar flow at 700 °C. X-ray diffraction and scanning electron microscopic studies are utilized to analyze the structural and morphological features of the synthesized materials, respectively. The presence of fluorine is also supported by energy-dispersive X-ray spectroscopy. The electrochemical properties are evaluated by means of Li/Li(2)CoPO(4)F half-cell configurations in both potentiostatic and galvanostatic modes. The Li/Li(2)CoPO(4)F cell delivers an initial discharge capacity of 132 mA h g(-1) at a current density of 0.1 mA cm(-2) between 2.0 and 5.1 V at room temperature. Due to the higher operating potential of the Co(2+/3+) couple in the fluorophosphate matrix, this cell shows a capacity retention of only 53% after 20 cycles, still the material delivered 108 mA h g(-1) at a high current rate of 1 C. Cyclic voltammetric studies corroborate the insertion and extraction of Li(+) ions by a single phase reaction mechanism during cycling.