Published in

Royal Society of Chemistry, Analyst, 13(139), p. 3227-3234, 2014

DOI: 10.1039/c4an00357h

Links

Tools

Export citation

Search in Google Scholar

Microfluidic-SERS Devices for One Shot Limit-of-Detection

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microfluidic sensing platforms facilitate parallel, low sample volume detection using various optical signal transduction mechanisms. Herein, we introduce a simple mixing microfluidic device, enabling serial dilution of introduced analyte solution that terminates in five discrete sensing elements. We demonstrate the utility of this device with on-chip fluorescence and surface-enhanced Raman scattering (SERS) detection of analytes, and we demonstrate device use both when combined with a traditional inflexible SERS substrate and with SERS-active nanoparticles that are directly incorporated into microfluidic channels to create a flexible SERS platform. The results indicate, with varying sensitivities, that either flexible or inflexible devices can be easily used to create a calibration curve and perform a limit of detection study with a single experiment.