Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Faraday Discussions

DOI: 10.1039/c4fd00040d

Links

Tools

Export citation

Search in Google Scholar

Boron doped diamond biotechnology: from sensors to neurointerfaces

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Boron doped nanocrystalline diamond is known as a remarkable material for the fabrication of sensors, taking advantage of its biocompatibility, electrochemical properties, and stability. Sensors can be fabricated to directly probe physiological species from biofluids (e.g. blood or urine), as will be presented. In collaboration with electrophysiologists and biologists, the technology was adapted to enable structured diamond devices such as microelectrode arrays (MEAs), i.e. common electrophysiology tools, to probe neuronal activity distributed over large populations of neurons or embryonic organs. Specific MEAs can also be used to build neural prostheses or implants to compensate function losses due to lesions or degeneration of parts of the central nervous system, such as retinal implants, which exhibit real promise as biocompatible neuroprostheses for in vivo neuronal stimulations. New electrode geometries enable high performance electrodes to surpass more conventional materials for such applications.