Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Lichenologist, 02(46), p. 213-228

DOI: 10.1017/s0024282913000820

Links

Tools

Export citation

Search in Google Scholar

Pine forest lichens under eutrophication generated by a great cormorant colony

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractLichen community changes were investigated on trees within a colony of great cormorants (Phalacrocorax carbo sinensis) established in a pine forest on the Curonian Spit, western Lithuania. The impact of birds on the forest has altered the number and characteristics of substrata available to lichens. The lowest number of lichen species and occurrences was registered on trees in the most active part of the colony with the highest nest density. Lichen community patterns were most strongly related to P and Ca content in substrata and pH values. Some acidophytic species showed negative correlations, both with long-term and short-term ornithogenic influence. However, three acidophytes (Chaenotheca ferruginea, Lepraria incana, Coenogonium pineti) demonstrated an affinity for the transitional zone and recently occupied trees, and furthermore,C. pinetiapparently reacted positively to a short-term ornithogenic influence but negatively to a long-term one. These three lichens, along with algae, were the main, and often the only, components of epiphytic communities on trees at the edge of the colony and apparently indicated the crucial point of the acidophytic community under the increasing load of nutrients. All nitrophytic species showed an affinity for a long-term bird influence and reacted negatively to a short-term influence. Only free-living algae (predominating speciesDesmococcus olivaceus) showed a clear affinity for trees occupied by bird nests.Hypogymnia physodeswas found to be an indicator for early environmental changes following eutrophication. The study also showed that high concentrations of P did not have a mitigating effect on the detrimental impact brought about by increases in N and pH levels, but was possibly equally detrimental to acidophytic lichens.