Published in

Royal Society of Chemistry, Journal of Materials Chemistry, 38(22), p. 20232

DOI: 10.1039/c2jm33585a

Links

Tools

Export citation

Search in Google Scholar

Synthesis and study of Prussian blue type nanoparticles in an alginate matrix

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new approach for the synthesis of Prussian blue type nanoparticles containing nanocomposites in the form of beads or films, as well as their corresponding aqueous colloids, was developed by using a water-soluble alginate matrix as a template and as a stabilizing agent. This method consists of the step-by-step building of a cyanometallate network in the pores of Mn+/alginate ionotropic gels in order to obtain a large range of nanocomposites containing cyano-bridged coordination polymer nanoparticles Mn+/[M′(CN)m]3−/alginate (where Mn+ = Ni2+, Cu2+, Mn2+, Fe2+, Eu3+ and M′ = Fe3+, Cr3+ (m = 6), Mo5+ (m = 8)). The nanocomposite beads and films, as well as the corresponding aqueous colloidal solutions, were studied by infrared (IR), UV/visible spectroscopy, and transmission electron microscopy (TEM) analyses, which reveal the presence of homogeneously dispersed uniformly sized cyano-bridged coordination polymer nanoparticles of 3–7 nm. These nanocomposite beads and films present superparamagnetic, spin-glass or paramagnetic behaviour depending on the nature of the metal ions used. In addition, the Eu3+-containing nanocomposites are room temperature optically active emitters displaying a characteristic 5D0 → 7F0–4 transition.