Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Soft Matter, 5(12), p. 1601-1609

DOI: 10.1039/c5sm01654a

Links

Tools

Export citation

Search in Google Scholar

Spreading of porous vesicles subjected to osmotic shocks: the role of aquaporins

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aquaporin 0 (AQP0) is a transmembrane protein specific to the eye lens, involved as a water carrier across the lipid membranes. During eye lens maturation, AQP0s are truncated by proteolytic cleavage. We investigate in this work the capability of truncated AQP0 to conduct water across membranes. We developed a method to accurately determine water permeability across lipid membranes and across proteins from the deflation under osmotic pressure of giant unilamellar vesicles (GUVs) deposited on an adhesive substrate. Using reflection interference contrast microscopy (RICM), we measure the spreading area of GUVs during deswelling. We interpret these results using a model based on hydrodynamic, binder diffusion towards the contact zone, and Helfrich's law for the membrane tension, which allows us to relate the spread area to the vesicle internal volume. We first study the specific adhesion of vesicles coated with biotin spreading on a streptavidin substrate. We then determine the permeability of a single functional AQP0 and demonstrate that truncated AQP0 is no more a water channel.