Published in

Royal Society of Chemistry, Nanoscale, 9(3), p. 3635, 2011

DOI: 10.1039/c1nr10316d

Links

Tools

Export citation

Search in Google Scholar

Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A single charge screening model of surface charge sensors in liquids (De Vico et al., Nanoscale, 2011, 3, 706-717) is extended to multiple charges to model the effect of the charge distributions of analyte proteins on FET sensor response. With this model we show that counter-intuitive signal changes (e.g. a positive signal change due to a net positive protein binding to a p-type conductor) can occur for certain combinations of charge distributions and Debye lengths. The new method is applied to interpret published experimental data on Streptavidin (Ishikawa et al., ACS Nano, 2009, 3, 3969-3976) and Nucleocapsid protein (Ishikawa et al., ACS Nano, 2009, 3, 1219-1224).