Published in

Royal Society of Chemistry, Organic and Biomolecular Chemistry, 19(5), p. 3092

DOI: 10.1039/b708045j

Links

Tools

Export citation

Search in Google Scholar

A theoretical study of hydration effects on the prototropic tautomerism of selenouracils

Journal article published in 2007 by Cristina Trujillo, Otilia Mó ORCID, Manuel Yáñez ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The prototropic tautomerism of 2-, 4-selenouracil and 2,4-diselenouracil has been studied using density functional theory (DFT) methods, at the B3LYP/6-311 + G(3df,2p)//B3LYP/6-31G(d,p) level. The relative stability order of selenouracil tautomers does not resemble that of uracil tautomers, but it is similar to that of thiouracils, even though the energy gaps between the different tautomers of selenouracils are smaller than for thiouracils. The tautomerism activation barriers are high enough as to conclude that only the oxo-selenone or the diselenone structures should be found in the gas phase. The specific interaction with one water molecule reduces these barriers by a half, but still the oxo-selenone form is always the most stable tautomer. The addition of a second water molecule has a relatively small effect, as well as bulk effects, evaluated by means of a continuum-polarized model. For isolated 2- and 4-selenouracils, the more favorable tautomerization process corresponds to a hydrogen transfer towards the selenium atom, the activation barriers for transfer towards the oxygen atom being much higher. This situation changes when specific and bulk effects are included, and the latter process becomes the more favorable one. For 2,4-diselenouracil the more favorable tautomerization, in the gas phase, corresponds to the H shift from N1 to the Se atom at C2, while solvation effects favor the transfer from N3 to the Se atom at C4.