Published in

Royal Society of Chemistry, Journal of Materials Chemistry A: materials for energy and sustainability, 38(1), p. 11894, 2013

DOI: 10.1039/c3ta12599h

Links

Tools

Export citation

Search in Google Scholar

Niobium pentoxide hollow nanospheres with enhanced visible light photocatalytic activity

Journal article published in 2013 by Lihong Li, Jinxia Deng, Ranbo Yu ORCID, Jun Chen, Zheng Wang, Xianran Xing
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Herein, we developed a simple template-free synthetic method for producing niobium pentoxide (Nb2O5) hollow nanospheres, and fabricated KNbO3 hollow nanospheres which retained the morphology of the template Nb2O5 hollow nanospheres by the molten salt method. The formation of Nb2O5 hollow nanospheres was via Ostwald ripening, and the structural evolution between niobium oxide and niobates was a kind of self-sacrificing templated process. These Nb2O5 hollow nanospheres with high surface energy (001) planes showed high thermal stability and large surface area. Furthermore, they not only showed strong intensity of blue emission, but they were also able to efficiently split water under visible light irradiation, and show potential for application as sensors, optoelectronic devices and promising photocatalysts for water splitting under visible light. Due to the high thermal stability of Nb2O5 hollow nanospheres and the simplicity of the protocol, we anticipate that this work will enrich the hollow nanostructures of inorganic compounds and provide a new strategy to synthesize hollow nanospheres of niobates and other kinds of materials.