Published in

Royal Society of Chemistry, Nanoscale, 4(4), p. 1078-1084

DOI: 10.1039/c1nr10465a

Links

Tools

Export citation

Search in Google Scholar

First-principles studies on structural and electronic properties of GaN-AlN heterostructure nanowires

Journal article published in 2011 by Haijun Zhang ORCID, Yafei Li, Qing Tang, Lu Liu, Zhen Zhou ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The structural and electronic properties of core-shell, eutectic, biaxial and superlattice GaN-AlN nanowires were studied through density functional theory computations. Due to more surface dangling bonds, nanowires with smaller diameters are energetically unfavorable. For the GaN-AlN heterostructure nanowires, their electronic properties highly depend on the GaN content, axial strain, configuration, and size. The valence bands are less affected by the GaN content, while the conduction bands depend on it. Hydrogen-passivated nanowires have much larger band gaps than their counterparts, since the surface states are removed by saturating the dangling bonds with hydrogen atoms. Moreover, due to multiple quantum-well structures, the confined electrons (holes) of superlattice nanowires become more localized and the difference of the mobility between the electron and hole becomes less apparent if the width of the barrier is larger. These findings are of value for better understanding heterostructure nanowires and their potential utilization.