Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 31(15), p. 13137

DOI: 10.1039/c3cp51644j

Links

Tools

Export citation

Search in Google Scholar

Antioxidant activity of propyl gallate in aqueous and lipid media: A theoretical study

Journal article published in 2013 by Manuel E. Medina, Cristina Iuga, Juan Raúl Alvarez-Idaboy ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, we have carried out a quantum chemistry and computational kinetics study on the reactivity of propyl gallate towards ˙OOH, ˙OOCH3 and ˙OOCHCH2 radicals, in aqueous and lipid media. We have considered three reaction mechanisms: hydrogen transfer (HT), radical adduct formation (RAF) and single electron transfer (SET). Rate constants and relative branching ratios for the different paths contributing to the overall reaction, at 298.15 K, are reported. Our results show that propyl gallate reacts mainly through the HT mechanism, independently of the solvent or the peroxyl radical, contrary to other phenols such as catechols and guayacols previously studied, which react mainly via the SET mechanism. In aqueous media at physiological pH, the calculated rate constants towards the ˙OOH, ˙OOCH3 and ˙OOCHCH2 radicals are 4.56 × 10(8), 1.59 × 10(6) and 4.05 × 10(8) M(-1) s(-1), while in lipid media the rate constants are 2.94 × 10(4), 7.73 × 10(3) and 9.94 × 10(5) M(-1) s(-1). Thus, a propyl gallate molecule acts as a very efficient peroxyl radical scavenger, both in aqueous and lipid media. Since the gallate moiety is a part of other naturally occurring polyphenols such as aflavine gallates and epigallocatechin gallates, the results of this study could be extrapolated to these compounds. Even if these compounds have other antioxidant structures or enhancers, the activity of the gallate moiety could be considered as a lower limit to their antioxidant activity.