Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 14(13), p. 6442, 2011

DOI: 10.1039/c0cp02198a

Links

Tools

Export citation

Search in Google Scholar

Unusual decrease in conductivity upon hydration in acceptor doped, microcrystalline ceria

Journal article published in 2011 by William C. Chueh, Chih-Kai Yang, Carol M. Garland, Wei Lai ORCID, Sossina M. Haile
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The impact of hydration on the transport properties of microcrystalline Sm(0.15)Ce(0.85)O(1.925) has been examined. Dense, polycrystalline samples were obtained by conventional ceramic processing and the grain boundary regions were found, by high resolution transmission electron microscopy, to be free of impurity phases. Impedance spectroscopy measurements were performed over the temperature range 250 to 650 °C under dry, H(2)O-saturated, and D(2)O-saturated synthetic air; and over the temperature range 575 to 650 °C under H(2)-H(2)O atmospheres. Under oxidizing conditions humidification by either H(2)O or D(2)O caused a substantial increase in the grain boundary resistivity, while leaving the bulk (or grain interior) properties unchanged. This unusual behavior, which was found to be both reversible and reproducible, is interpreted in terms of the space-charge model, which adequately explains all the features of the measured data. It is found that the space-charge potential increases by 5-7 mV under humidification, in turn, exacerbating oxygen vacancy depletion in the space-charge regions and leading to the observed reduction in grain boundary conductivity. It is proposed that the heightened space-charge potential reflects a change in the relative energetics of vacancy creation in the bulk and at the grain boundary interfaces as a result of water uptake into the grain boundary core. Negligible bulk water uptake is detected under both oxidizing and reducing conditions.