Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Parasitology, 01(124)

DOI: 10.1017/s0031182001008915

Links

Tools

Export citation

Search in Google Scholar

Immune modulation by fish kinetoplastid parasites: A role for nitric oxide

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Trypanoplasma borreli and Trypanosoma carassii are kinetoplastid parasites infecting cyprinid fish. We investigated the role of nitric oxide (NO) in immune modulation during T. borreli and T. carassii infection of carp. Phagocytic cells from different organs produced NO and serum nitrate levels increased, demonstrating that T. borreli activates NO production in vivo. In contrast, T. carassii did not induce NO production in vivo and inhibited LPS-induced NO production in vitro. Production of NO was detrimental to the host as T. borreli-infected carp treated with the inducible NO synthase inhibitor aminoguanidine had a higher survival than infected control carp. This detrimental effect can be explained (in part) by the toxicity of NO to cells in vitro as NO inhibited the proliferative response of blood and spleen leukocytes. Head-kidney phagocytes were resistant to the immunosuppressive effects of NO in vitro. The NO-inducing activity of T. borreli may be an adaptation developed to ensure survival and immune evasion in the fish host. Apparently, T. carassii has adopted another strategy by deactivating specific functions of phagocytes. Both strategies may ensure long-term survival of the parasite.