Published in

Royal Society of Chemistry, Dalton Transactions, 36(40), p. 9313

DOI: 10.1039/c1dt10779h

Links

Tools

Export citation

Search in Google Scholar

Preparation of hybrid mesoporous silica luminescent nanoparticles with lanthanide(III) complexes and their exhibition of white emission

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We chose dipicolinic acid as a tridentate chelating unit featuring ONO donors to react with lanthanide(III) ions to yield tight and protective N(3)O(6) environments around the lanthanide(III) ions. We immobilized the lanthanide(III)-dipicolinic acid complexes on colloidal mesoporous silica with diameter smaller than 100 nm by a covalent bond grafting technique and obtained nearly monodisperse luminescent Eu-dpa-Si and Tb-dpa-Si functionalized hybrid mesoporous silica nanomaterials. These hybrid nanomaterials were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and photoluminescence spectroscopic techniques. The hybrid mesoporous silica nanoparticles exhibit intense emission lines upon UV-light irradiation, owing to the effective intramolecular energy transfer from the chromophore to the central lanthanide Eu(3+) and Tb(3+) ions. Furthermore, the functionalized nanomaterials can be turned to white light materials after annealing at high temperature.