Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Journal of Materials Chemistry A: materials for energy and sustainability, 16(3), p. 8706-8714, 2015

DOI: 10.1039/c5ta01224d

Links

Tools

Export citation

Search in Google Scholar

Morphology and local electrical properties of PTB7:PC71BM blends

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The power conversion efficiency of single layer organic solar cells can approach 10% with blends such as the polymer PTB7 and the fullerene derivative PC71BM. Here the detailed structure of PTB7:PC71BM blends deposited with and without addition of diiodooctane is studied by transmission electron microscopy and scanning probe microscopy. The details of bulk structure, such as the thickness of the layer covering fullerene domains and the grain structure of the film are examined. We find that fullerene-rich domains can be near the surface of the film or buried deeper, near the substrate. The local electrical properties of these blends are studied by conductive atomic force microscopy for different configurations of electrodes. Different power conversion efficiencies of blends with and without diiodooctane are explained in terms of local photoconductive properties.