Published in

Royal Society of Chemistry, Polymer Chemistry, 8(1), p. 1186

DOI: 10.1039/c0py00075b

Links

Tools

Export citation

Search in Google Scholar

Electrostatic assembly of functional polymer combs onto gold nanoparticle surfaces: Combining RAFT, click and LbL to generate new hybrid nanomaterials

Journal article published in 2010 by Antoine Bousquet, Cyrille Boyer, Thomas P. Davis, Martina H. Stenzel ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Comb polymers have been synthesized using a "grafting-onto" method via a combination of Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization and hetero-Diels-Alder (HDA) cycloaddition. A random copolymer comprised of tert-butyl acrylate (tBA) and hydroxyethyl acrylate (HEA) was post-modified via a two step process to introduce diene functionality. Polymers synthesized using benzyl pyridin-2-yldithioformate as a RAFT agent were used as the dienophile in a click reaction with polymer bearing diene pendant groups thus forming comb polymers. Polystyrene (PS), poly(n-butyl acrylate) (PnBA), poly(tert-butyl acrylate) (PtBA) and poly(oligoethyleneglycol methyl ether acrylate) (POEGMEA) were then grafted onto P(tBA-r-HEAdiene) backbones using a reaction time of 24 h. The grafting densities of the comb polymers ranged from 100% to 50%, depending on the chemical structure and the molecular weight of the linear side chain, as well as the initial molar ratio of dienophile to diene groups. Hydrolysis of the poly(tert-butyl acrylate) (PtBA) yielded hydrophilic or amphiphilic polymers with a poly(acrylic acid) (PAA) backbone. Finally a layer-by-layer approach was utilized to build up an initial layer of poly(ethylene amine) followed by a layer of PAA-g-POEGMEA onto gold nanoparticles (GNPs) yielding hybrid organic/inorganic nanoparticles. UV-vis spectroscopy, zeta-potential measurement and X-ray photoelectron spectroscopy (XPS) were used to characterize the hybrid nanoparticles showing that the POEGMA surface layer can shield the charges of the outer layer effectively.