Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 4(13), p. 1521-1530, 2011

DOI: 10.1039/c0cp00969e

Links

Tools

Export citation

Search in Google Scholar

Interaction of cephalosporins with outer membrane channels of Escherichia coli. Revealing binding by fluorescence quenching and ion conductance fluctuations

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Outer membrane channels in gram-negative bacteria are implicated in the influx of the latest generation of cephalosporins. We have measured the interaction strengths of ceftriaxone, cefpirome and ceftazidime in the two most abundant outer membrane porins of Escherichia coli, OmpF and OmpC, by both ion current fluctuations through single protein channels and fluorescence quenching. Statistical analysis of individual antibiotic entry events in membrane-incorporated porins yielded the kinetic rates and the equilibrium binding constant of each antibiotic-porin pair. Affinity constants were independently obtained by measuring the static quenching of inherent tryptophan fluorescence in the porins in the presence of the antibiotics. Through an empirical inner filter effect correction we have succeeded in measuring the chemical interaction of these strongly absorbing antibiotics, and obtained a qualitative agreement with conductance measurements. The interaction of all three antibiotics is smaller for OmpC than OmpF, and in the case of each porin the interaction strength series ceftriaxone > cefpirome > ceftazidime is maintained.