Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Journal of Fluid Mechanics, (703), p. 1-28

DOI: 10.1017/jfm.2012.150

Links

Tools

Export citation

Search in Google Scholar

Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn the traditional hybrid RANS/LES approaches for the simulation of wall-bounded fluid turbulence, such as detached-eddy simulation (DES), the whole flow domain is divided into an inner layer and an outer layer. Typically the Reynolds-averaged Navier–Stokes (RANS) equations are used for the inner layer, while large-eddy simulation (LES) is used for the outer layer. The transition from the inner-layer solution to the outer-layer solution is often problematic due to the lack of small-scale dynamics in the RANS region. In this paper, we propose to simulate the whole flow domain by large-eddy simulation while enforcing a Reynolds-stress constraint on the subgrid-scale (SGS) stress model in the inner layer. Both the algebraic eddy-viscosity model and the one-equation Spalart–Allmaras (SA) model have been used to constrain the Reynolds stress in the inner layer. In this way, we improve the LES methodology by allowing the mean flow of the inner layer to satisfy the RANS solution while small-scale dynamics is included. We validate the Reynolds-stress-constrained large-eddy simulation (RSC-LES) model by simulating three-dimensional turbulent channel flow and flow past a circular cylinder. Our model is able to predict mean velocity, turbulent stress and skin-friction coefficients more accurately in turbulent channel flow and to estimate the pressure coefficient after separation more precisely in flow past a circular cylinder compared with the pure dynamic Smagorinsky model (DSM) and DES using the same grid resolution. Furthermore, the computational cost of the RSC-LES is almost the same as that of DES.